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PROPULSION OF A FLAPPING AND OSCILLATING AIRFOIL 
By I. E. GARRICK 

SUMMARY 

Formulas are given for the propelling or drag force 
experienced in a uniform air stream by an  airfoil or an  
airfoil-aileron combination, oscillating in any qf three 
degrees of freedom: vertical $upping, torsional oscillations 
about a $xed axis parallel to the span, and angular 
oscillations of the aileron about a hinge. 

INTRODUCTION 

It is the object of this paper to investigate theoreti- 
cally the horizontal forces experienced by an airfoil 
or an airfoil-aileron combination in a uniform air 
stream made to execute flapping motion or to perform 
angular oscillations about a fixed axis parallel to the 
span The problem treated is that of an infinite wing, 
or wing and aileron, performing steady sinusoidal oscil- 
lations in any of three degrees of freedom: vertical 
flapping at  right angles to the direction of motion, 
oscillations about an arbitrary fixed axis parallel to its 
span, and oscillations of the aileron about a hinge. 

The work of Wagner (reference 1) for calculating 
the distribution of vorticity in the wake of an airfoil 
in nonuniform motion appears as a starting point. A 
vortex wake is generated by the oscillatory motion, 
which in turn affects thebentire nature of the forces 
experienced by the wing. Beautiful experimental 
checks of Wagner’s theory of the manner in which the 
circulation builds up have been obtained by Farren 
and Walker. (Cf. reference 2, ch. 9 for a more detailed 
bibliography.) Birnbaum and Kussner (reference 3) 
have also attacked the problem of obtaining the lift 
forces on an oscillating Wing by certain series expan- 
sions that are rather cumbersome to handle. Glauert 
(reference 4) has treated the case of an oscillating air- 
foil and has obtained expressions for the forces and 
moments that check with Wagner. Theodorsen (ref- 
erence 5 )  has developed compact expressions for the 
lift and moments in the case of an airfoil-aileron com- 
bination of three independent degrees of freedom and 
has applied the results to an analysis of the wing-flutter 
problem. The foregoing references are concerned only 
with the lift forces, not with the horizontal forces; 
however, von Krirmhn and Burgers, who present in 
reference 2 a r6sum6 of the work (to 1934) on non- 

uniform motion, calculate there &the propulsion effect 
on a flapping Wing. The present paper makes appii- 
cation of the compact formulas developed by Theo- 
dorsen and of the method outlined by von K&rm&n 
and Burgers to treat the propulsion on a wing oscil- 
lating in three independent degrees of freedom. 

The assumptions underlying the theory are small 
amplitudes in the various degrees of freedom and n 
(infinitely) narrow width of the rectilinear vortex 
wake, as well as the usual assumption of a perfect fluid. 
Quantitative agreement with experimental valiiw, 
which are not very abundant, can hardly be expectetl 
since the finite width of the wake is important with 
regard to considerat,ions of the resistance ; neverthe- 
less the results can be useful for interpreting such ex- 
periments as exist on the so-called “Katzmayr effect” 
(reference 6) and for clearing up certain aerodynamic 
features of the nature of the flight of birds.l Experi- 
mental tests on an oscillating and flapping wing are 
being conduct6ed at the present time by the N. A. C .  A. 

This paper is not concerned with the problem of 
flutter, which is an instability phenomenon that mani- 
fests itself in certain critical frequency ranges and is 
due to an interaction and feedback of energy because of 
coupling in the various degrees of freedom. (Cf. refer- 
ences 3 and 5.) Profile drag is to be considered as ad- 
ditive to the horizontal forces obtained. 

FORCES AND MOMENTS ON AN OSCILLATING AIRFOIL 

Consider an airfoil represented by the straight line of 
figure 1. The airfoil chord is of length 2b and (its mean 
position wit’h b as reference unit length) is assumed to 
extend along the x axis from the leading edge x = - l  
to the trailing edge x= + 1. The coordinate x=a repre- 
sents the axis of rotation of the wing, x=c the coordinate 
of the aileron hinge. The airfoil is assumed to  undergo 
the following motions with small amplitudes: A vertical 
motion h of the entire wing, positive downward; a 
rotation about x=a of angle of attack a, positive clock- 
wise and measured by the direction of the velocity v 
at infinity and the instantaneous position of the wing; 
an aileron motion about the hinge X=C of angle p, 

1 It is interesting to observe that the Katzmayr effect occurs in nature also in the 
motion of fish. See “The Physical Principles of Fish Locomotion,” by E. 13. Ricb- 
ardson, Jour. Exp. Biology, vol. XIII, no. 1, Jan. 1936, pp. 63-74. 
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measured with respect to the undeflected position of 
the wing itself. 

Leoqnq edge 

FIGURE 1.-Parameters of the airfoil-aileron combination. 

Let us consider sinusoidal oscillations in the various 
degrees of freedom and use the complex-number nota- 
tion 

(1) i a= aoei(P+vo) 
P= pnef(@+Pl) 

h= hoei(Pt+,z) 

The constants an, Po, and h, represent, the ma,ximum 
amplitudes in the various degrees of freedom, pol cpl, 
and cp2 are phase angles, and the parameter p determines 
thc frequency of the oscillations. By means of the rela- 
tion 

an important parameter k is defined, i. e., k=pblu. It 
will be seen that 2njk is the wave length between suc- 
cessive waves in the vortex wake in terms of the half- 
chord b as reference length. 

The following three formulas for the lift and moments 
on an oscillating airfoil of three degrees of freedom are 
due to Theodorsen and are taken from reference 5:2 

.. 
P = - pb2(vniu + nh - ?rb& - vT~S - T1b p )  

- 2 n p ~ b  C(k) Q (3 1 
Me=- p 6 z [ ~ ( ~ - a ) d ~ + n b z ( ~ + a z ) i l + T l ~ v 2 P + T l ~ l i b ~  

T,,v,vb& + 2T,3b2S 1 +;v2T&-%~bT1& 1 

(5 )  
where 

These equations are to be interpreted as follows: The 
real part of P denotes the l i f t  force (positive downward) 

9 The writer wishes to record the fact that in order to establish a check on these 
general relations he has compared them with the widely varying expressions given 
by Wagner, Glauert, von Kirm&n and Burgers, and Kussner in their special cases 
(references 1 to 4). Identical agreement has resulted in all cases, except that in the 
case of Kussner’s formulas a numericaleheck was madesinceananalyticcheck wasnot 
feasible. The numerical agreement was good except in the case of the wing-aileron 
combination where Kussner makes some rough approximations. 

A recent paper by Cicala (reference 7) deserves mention. Cicala derives expressions 
for the lift and moment on an oscillating airfoil that seem to agree with the results 01 
Theodorsen, although the method is somewhat more involved. The functions de 
noted by Cicala as A’ and A” correspond to 1-F and -0 defined in equation (6). 

%ssociated with the motion given by the real parts of 
[I); i. e., a=ao cos (Pt+cpo)? p=po cos (p,t+cpl), and 
a=ho cos (Pt+cp2). Theimaginary part of P denotes 
;he lift force associated with the motions a=ao sin 
@+PO), P=Po sin (pt+cpl), and h=ho sin (Pt+cp2). 
Similarly Ma and MB denote in complex form the mo- 
ments (positive clockwise in fig. l) about x=a and 
c=c, respectively, due to the motions (1). (The mean 
value of a or p is considered zero. When the mean 
values are different from zero, the forces and moments 
arising from constant values am and pm are to be added.) 
In equations (3), (4), and (5) there occur various 
symbols that have not yet been defhed. The T’s, 
i .  e., T,, T3? T4, etc., are constants defined completely 
by the parameters c and a (reference 5, p. 5). For 
reference they are listed in appendix I, where there is 
also given a collection of the symbols employed in the 
notation of this paper. The function C(k) is a useful 
complex function of the parameter k (see ( 2 ) )  and is 
given by 

where 
C(k) =F(k) +iG(k) (6) 

Functions Jo, J1,  Yo, and Yl are standard Bessel func- 
tions of the first and second kinds of argument k. 
Figure 2 and table I, which are taken from reference 
5 (with certain minor changes), illustrate these func- 
tions. 

In  what follows we shall be interested only in one 
part of the preccding coniplex equations. It is an arbi- 
trary matter whether to employ the real or imaginary 
parts. The choice made here is to treat the ima<e;inary 
parts, and we write down for reference the imaginary 
parts of equations (l), (3), (4), and ( 5 ) :  

(7) 1 a=ao sin (p,t+cpo) 

@=Po sin (IPtfcpl) 
h=& sin (p‘t+cp2) 

I. 00 
F 
.80 

.60 

.40 

.20 
-G 

0 4 8 lo I2 16 20 24 28 32 36 40 
L’k 

FIQURE 2.-The functions P and --Q against l/k. 



3 

--hop sin (pt+pz)-b('-a)a,,p sin @t+po)+,v~o TlO 

-2bPOp sin (pt+pJ] (10) 

cos ~ + n )  

In addition to these equations we will need the expression for the force on the aileron. 
in complex form as (use formulas on pp. 5-8, reference 5) 

PB = - pb2( - vT4& - T& + bT,il! - g v T 5 8  - z;;Tzi) 

This equation is obtained 

1 b 

And the imaginary part is 
PB=-pbz[-vT4a,,p cos (pt+po) +T4hopz sin (pt+pz)-bT9a0p2 sin (pt+p~) 

-b(;--a)a0p sin (p t -Cpo)+~v /30  TlO cos (pt+pl: - - -gbP0p sin (pt+pl)] 
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Following the method of von K%rmBn and Burgers 
(reference 2), t3he average horizontal force will be 
determined in two ways: (1) by the energy formula 
given in equation (12) ,  and (2) by the force formula 
given in equation (13). The agreement of the results 
of the two methods will thus furnish a check on the 
work. 

ENERGY FORMUU 
- - -  
W= E+ P,v (12) 

where w represents the average work done in unit 
time in maintaining the oscillations (7) against the 
forces and moments (8), (9), and (10) ;  2 represents the 
average increase in kinetic energy in unit time in the 
vortex wake and; p,; denotes average work done in 
unit time by the propulsive force P,.3 

P,= npS2+ a! P f p P# 
FORCE FORMULA 

(13) 
where P, is the propelling force; cr and /3 are given in 
(7); P in (S), and Ps in (11); S is obtained from the 

r e l a t i o n  S = b -  yJx+1 where y is the vorticity 
*--I 2 

distribution. The value of S is finite, since y is infinite 

a t  the leading edge x = - 1, and is 1 
in the order of - 

given in equation (25 )  and derived in appendix II.* 
in equation (12). 

The instantaneous rate at  which work is done in main- 
taining the oscillations is ~ 

1 -  

d z f l  
We proceed first to evaluate 

w= - (Ph+M,dr+&r,p) 
For the average work done in unit time we have 

(14) 

On employing equations (7) $0 (10) and performing the 
indicated integrat,ions, we obtain after some lengthy 
but elementary reductions 

where 
&= F' 

3 When the energy released in the wake in i s i t  time IS less than the work requlred 
in unit time to maintain %e oE;cillation~, i. e., E<W, then Pz is positive and is a true 
propelling force. When E> W ,  then P, is negative and denotes not propulsion but 
resistance or drag. 

4 Formula (13) is obtained by a slight extension of the method of reference 2, pp 
305306. The "suction" force T P S ~  arising from the infinite vorticityat the leading edge 
IS explained in reference 2 (pp. 52 and 306) along lines laid down by Orammel and 
Clsotti. (See also referenee 8, pp. 135 and 203.) The fact that this in6nity occm 
implies that the ideal flow for an infinitely thin wing is unrealizable. We are regard 
ing this case, however, as a limiting one of a wing that is rounded and smooth at thc 
leading edge and sharp at the trailing edge. 

In order to calculate Fin equation (12), we need the 
expression for the vorticity in the wake. The magni- 
tude of the vorticity in the wake is given in complex 
form by 

(16) 
where Uoeiq is a complex quantity determined in (19). 
(Cf. reference 5, p. 8, in which x instead of 2-1 is used 
in the exponent.) From the definition of the circula- 
tion about the airfoil as the integral of the vorticity in 
the wake we have in complex form, 

(17) 
r =LmU&= -~Uo,&eiPt i 

Also from reference 5, equation (8), the condition for 
smooth flow at the trailing edge leads to the relation 

rn 

Combining (17) and (18) we may write 
r = an& - -( -,/- 2+1 - 1) Udz 

Z-1 

On equating coefficients of eipz on both sides of this 
relation and solving for the quantity Uoeiq (for the 
evaluation of the definite integral in terms of Bessel 
functions see reference 5, p. S), we obtain 

where, 
Uoeip= -4(A+iB)  (J+iK)e-Zk (191 

J1+ Yo, K -  171--Jo 
D '  J= - D 

B=vaO sin po+hop cos p2+b --a crop cos pol G 
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When t.he imaginary part of U is denoted by y, which 

is the only part of interest, the vorticity in the wake is 
given by 

where 
r=Ao cos kx+Bo sin k x  

1 xAo=(BK-AJ) sin p t - ( A K + B J )  cos p t  
1 qBo= (BK-AJ) COS Pt+ (AK+BJ) sin p t  

(2 1) 

The induced vertical velocity a t  a great distance x 
downstream is 

Jm *dx'=-(Ao 1 sin kx-Bo cos kx )  2 w,=- 27r -,x-x 

The difference in potential at  points of the x axis in the 
wake is 

b 
cp2-c$1=b f -jdx=,(Ao sin kx-Bo cos kx) 

and the kinetic energy in the wake (per unit length) at  
a point x along the surface of discontinuity far from the 
airfoil is 

(22) 
1 

1 b  ---(Ao sin lex-Bo cos kx)2 -2 2k 

b 

E1=~Pwz(cp2-cpJ 

=4pg[ (BK-AJ)  COS ( p t + k )  
+ ( A K + B J )  sin (pt+kx)12 

The mean value of El with respect to time is inde- 
pendent of x and is given by 

I? -27r - z p l d t  =% (A2+ B2) 

And, finally, the average value of the increase in energy 
in the field in unit time is 

E=vE,=-(A~+B~) 2 p b ~  
k D  

or also 
- 3 
E= 7rpb2$[C;h2 + Cra2+ C3p02+2C,aoho 

+ 2 C & o h o f 2 ~ 6 ~ 0 ~ 0 1  (23) 
where 

2 cl=xD 

Equation (12) now defines Fzv  and hence F,. We 
have 

or 
FxV= v-z 

- 
px= 7r~bit1~[Alh2+AzOrO2 +Ab2 +2A4aoho 

+2Adoho +2A,aopol (24) 
where from equations (15) and (23) 

A1 =BI - 4, A2 =B2 - 4, etc. 

We shall now proceed to the direct calculation of P ,  from (13). The value of S is derived in appendix I1 
and in complex form is given by 

7'4 2 -  
2C(k)&- bdr -;-,/1 --c2v'p+ ; b6-j 

Again we shall use only the imaginary part of this expression which is - 
(2 5) 

& J ( M  2 sin p t f N  cos p t )  

where 

TI0 1; 1 vuo sin po+l~op cos p2+b a0p cos po+ -upo sin pl+-bpop 27r cos pl] 
7r 

2 T4 +baop sin p,-;J~->vP~cos q1----bp0p 7r sin p1 

1 1 at$ 6 The exPression y W J & a - + d  is actually equal to Tzpt$z taken along the surface of discontinuity (the z axis) where t$=+a-+, and *=us,. The latter expression is an 
equal to 5 P [ @) '+ e) *]taken over a proper space interval, i. e., represents the kinetic energy in a certain volume. 
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TI0 TI 1 vao sin ao+hop cos a2+b a0p cos cpo+-vPo sin al+-bPOp cos a,] 

sin qo+ TlO ;vpo cos pl -T"bhp sin PI] 

n 2n 

2% +ZG[vaO cos cpo-iiop sin a2--6 

2 T4 -bWp cos cp0-- JF-C2vPo sin PI+; bpopo cos p1 
n- 

The mean value of npS2 with respect to time is 

This expression becomes, after a considerable number of terms cancel, 
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Finally from (13) the average propulsive force is 
- 
Px=~PbP2[a1h02+ (az+bz)d+ (a3+c3> Po2 + 2 (a4 + b4) q h O  -k2 + 6.5) POh,  

$2 (a6 + bf3 %POI (29) 
In order that equations (24) and (29) agree we must 
have that 

A ~ = C Z ~  
+ bz  

&=as+ c5 

.&=a6 + be +e6 

Each of these relations may be reduced to an identity, 
e. g., consider AI and al. From (15)) (23)) and (26) 

a1 = F2+ G2 
In order that Al=al  the following relation must hold 

To show that this is true note that 

F2+G2= (F+iG) (F-iG)=- Ji2+ Yi2 
D 

(cf. reference 5, p. 8) and from a well-known property 
of the Bessel functions, 

Hence equation (31) follows. 
By the use of the relation (31) and the definitions of 

the various T's given in the appendix, it  can be veri- 
fied that the remaining relations in (30) are also iden- 
tities. 

It msy be of interest to consider the special cases of 
one degree of freedom. Let the motion of the wing 
consist only of the vertical motion 6 at right angles to 
the direction of flight, i. e., flapping motion. The pro- 
pelling force is then 

(32) Fx= rpbp'ht ( F2 + G2) 
Consider in this case the ratio 

P,v-energy of propulsion 
w total energy 
-- 

F2+G2 
F =--- (33) 

This function, shown in figure 3, represents the theo- 
retical efficiency of the flapping motion (unity= 100 per- 

0 This result agrees with the formula of von KBrmln and Burgers (reference 2, p. 
306). The expressions of reference 2 denoted by 

bl=l+Ai-A AI ( Q - S ) +  A A2 (P-C) 
ba=Az--X A1 ( Q - 8 - A  AI (P-C)  

reduce in our notation simply to 2F and ZQ, respectively. 

sent). It is observed that a propelling force exists in 
the entire range of l/k, the egciency being 50 percent 
Cor infinitely rapid oscillations and 100 percent for 
Lnfinitely slow flapping. 

.80 

.60 
Pz V 

T O  

.zo ' ' " I ' * ' ' * " ' * s 

0 2 4 6 8 f0 fZ I4 f 6  f 8  20 
l/k 

FIGURE 3.-The ratio-of energy of propulsion to the energy required to maintain the 
P Z V  

oscillations (5) as a function of l /k  for the case of pure flapping. 

For the special case of angular oscillations about a 
alone (h=O, p=O) the horizontal force is 

- p, = Tpbp2b2a02{ (P + G2) [; + (a - a ) ]  

+;(; - a )  -;- (+ a);] (34) 

FIGURE 4.-The ratio of the energy dissipated in the wake to the energy required to 
maintain the oscillations (a%) as a function of l /k  for the case of pure angular 
oscillations about x=a. 

- _  
In figure 4 there is shown the ratio E/W, in this case 
for several positions of the axis of rotation. These 
curves give the ratio of the energy per unit time released 
in the wake to the work per unit time required to 
maintain the oscillations. In the range of values 
O<E/V<l, 'P,  is positive and denotes a thrust or 
propelling force; for other values it is negative and 
denotes a drag force. 

LAN GLEY MEMORIAL AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE E OR AERONAUTICS, 

LANGLEY FIELD, VA., May 4, 1936. 



APPEN~IX I 
NOTATION 

a, angle of attack (fig. 1). 
p, aileron angle (fig. 1). 
h, vertical distance (fig. I ) .  
. dcu d2cu 
a!==-, &=-) etc. dt dt2 
ao, PO, h ~ ,  PO, C P I ,  v2, amplitudes and phase angles 

of the oscillations (equation ( 7 ) ) .  
b, half chord, used as reference length. 
x, coordinate in direction of airfoil chord. 
t ,  time. 
v, velocity of the general motion in direction of 

p ,  2n times the frequency of the oscilIations. 
k,  reduced frequency (equation (2)). The wave 

length between successive waves in the vortex 
wake is 2nbjk. 

x axis. 

a,, coordinate ol axis of rotation (fig. 1). 
e, coordinate of aileron hinge (fig. 1). 
i, imaginary unit J-1. 

e ,  base of natura1 loga.rit.hms. 
p, mass density of air. 

P,  lift force on airfoil (+downward in fig. 1). 
M,, moment on airfoil about a (+clockwise in fig. 1) .  
AdB, moment on aileron about c (+clockwise in 

Pg, lift force on aileron (+downward in fig. 1). 
fig. 1). 

C(k), F, G, Jo, J1, Yo, Yl, J ,  K, D, Bessel functions of 
the argument k.  (Cf. equations (6 )  and 

- (19),  fig. 2, and table I.) 
W, average work done in unit time in maintaining 

the oscillations. 
average increase of kinetic energy in the wake 

in unit time. 
Fx, average force in the direction of the r axis 

(+propulsion, -drag). 

&, defined by equation (18).  
A, B, defined by equation (20).  

Ao, Bo, defined by equation (21). 
M,>N, defined by equation (25).  

A~...AB,B~...B~,C;...~~, a, ,... U6, b z ,  bq, 6 6 ,  C3, C5, c6,coefficients. 

U, distribution of vorticity in the wake in complex 
form (equation (16) ) .  
8 

Uoeiq, coefficient1of U, given in equation (19). 
y, imaginary part of U. 
S, defined by equation (13); see also appendix 11. 
I', circulation about the airfoil, defined by equn- 

tion (17).  

DEFINITIONS OF THE T's 
1 T1=-3(2 +e2) J=+C  COS^ c 

Tg=2 'C' ,(1-c2):+aT4] 



EVALUATION OF S (EQUA’I’ION (25)) 

From reference 5 (p. 7) we have that the condition 
for smooth flow at the trailing edge is obtained from the 
equation 

(1) 
a 

~ ( ‘ p ~ + ( P ~ + ‘ p ~ + ( P o : - l - ‘ p o + ‘ p ~ ) F , = O  

where the p’s are as follows (a f sign is to be prefixed 
to each ‘p, + for the upper surface, - for the lower 
surface) : 

1 ‘po=-vpb[ JG2 C O S - ~ C -  (x-C) log NI 
?I- 

_ _ _ _  1 
2 s  ‘pj= -flb2[[J1 -8 Jl -2+ ( x - 2 ~ )  -JE2 COS-’C 

- (x-c)2 log Aq 
where ~- 

I--CX- J1-c2J1-x2 N= 2-e 
Condition (1) leads to the relation (cf. (18)) 

2 s  ‘imJ”’ xo- 1 Udxo=va+i+b 

On substituting lor the PIS, xrraking~use* of relalion (2) 
arid of equation XI, reference 5, which 1s 

S=-- J Z  (2C(k) Q-  bci-;&Z 2 vP+; T4 bfl] 2 
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TABLE 1.-VALUES OF T H E  BESSEL FUNCTIONS 

k 
- 

m 
10 
6 
4 
2 
1 
.8 
.e  
, 5  
..I 
. 3  
2 

. 1  

.05 
,025 
.01 

0 

__ 
J1 
- 
__----  
0.0435 -. 2767 -. 0660 
.5767 
.4401 
.3688 
,2867 
. a23 
. 1060 
,1483 . OD95 
.0499 
I1250 

,0125 . 0050 
9 

Yo 
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- 807“ 

-1 OXLO 
-1.5342 
-1 979 

-3 006 

- 0169 

-2 430 

-m 

-_ - 

Yl 

- - _ _  - _. - 
0.2490 
-, 1750 

.3979 
1070 
7812 

.9780 
-1  2604 

- - I  4714 
-1 7808 
-2. ‘L920 
-3,3235 

-la. 8 
-25 I; 
-63 7 

- 6. 460 

-m 

-- 

- 
D 

0 
.2548 
.4251 
,6389 

1 2913 
2 ti706 
3 4070 
4 710R 
5.8486 
7 ti823 

11.130 
19 670 
57 810 

1‘14 26 
713 4 
195 

m 

- _  

- 
F 

0.5000 
.5006 
.5017 
.5037 
.5120 
f6394 
.5541 
.5788 
.5979 
. tizw 
. tifiSl1 
. 7nh  . 8:120 
.9000 
,9545 
,9824 

1. OM) 
___ 

- 
-G 

0 .om 
.0206 
.0305 

,1003 
,1165 . 1378 
.1m7 

I650 

188b 
, 1723 

1305 

.0482 

.n577 

170:; 

. 0872 

0 _- 
!I 
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